Graphical representation of the cross product
Definition 
The cross product generates a vector that is orthogonal to those that generate it and whose magnitude is the multiplication of the magnitudes of each vector and the sine of the angle between them.
The length of the resulting vector corresponds to the area of the parallelepiped formed by the two vectors that generate it:
ID:(4582, 0)
Productos de Vectores
Description 
Variables
Calculations
Calculations
Equations
Examples
El producto cruz se puede definir como una determinante de una matriz cuyas lineas son los versores del sistema
| $ \vec{a}\times\vec{b} =( a_y b_z - a_z b_y , a_z b_x - a_x b_z , a_x b_y - a_y b_x )$ |
(ID 3676)
El producto punto en dos dimensiones de los vectores
| $ \vec{a}\cdot\vec{b} = a_x b_x + a_y b_y $ |
(ID 4577)
El producto punto se calcula sumando los productos de las coordenadas de los vectores. Si los vectores son
| $ \vec{a}\cdot\vec{b} = a_x b_x + a_y b_y + a_z b_z $ |
(ID 3673)
El producto punto se puede expresar en funci n de las magnitudes de los vectores y del ngulo entre ambos vectores. Si los vectores son
| $ \vec{a}\cdot\vec{b} = \mid\vec{a}\mid \mid\vec{b}\mid \cos \theta $ |
(ID 3675)
Si se expresa el producto cruz en funci n del versor
| $ \mid\vec{a}\times\vec{b}\mid = \mid\vec{a}\mid \mid\vec{b}\mid \sin \theta $ |
donde
(ID 3677)
The cross product generates a vector that is orthogonal to those that generate it and whose magnitude is the multiplication of the magnitudes of each vector and the sine of the angle between them.
The length of the resulting vector corresponds to the area of the parallelepiped formed by the two vectors that generate it:
(ID 4582)
ID:(495, 0)
