Método de Celdas de Boltzmann (LBM)

Storyboard

El método de celdas de Boltzmann o lattice Boltzmann Model emplea un sistema de ecuaciones basados en la teoría de transporte de Boltzmann para calcular la velocidad de un fluido.

>Model

ID:(1030, 0)



Density

Equation

>Top, >Model


If the parameters are calculated by averaging over the speed using

$ \chi_k(\vec{x},t) =\displaystyle\frac{1}{c(\vec{x},t)}\displaystyle\int d\vec{v} f(\vec{x},\vec{v},t) \chi_k(\vec{x},\vec{v},t)$



the mass density estimation is obtained by:

$\rho(\vec{x},t) = m\displaystyle\int f(\vec{x},\vec{v},t)d\vec{v}$

ID:(8458, 0)



Speed of the Flow

Equation

>Top, >Model


If the parameters are calculated by averaging over the speed using

$ \chi_k(\vec{x},t) =\displaystyle\frac{1}{c(\vec{x},t)}\displaystyle\int d\vec{v} f(\vec{x},\vec{v},t) \chi_k(\vec{x},\vec{v},t)$



the velocity of the flow is calculated by integrating the velocity distribution function on all velocities by weighing the velocities:

$\vec{u}(\vec{x},t) = \displaystyle\frac{m}{\rho}\int \vec{v}f(\vec{x},\vec{v},t)d\vec{v}$

ID:(8459, 0)



Temperature

Equation

>Top, >Model


If the parameters are calculated by averaging over the speed using

$ \chi_k(\vec{x},t) =\displaystyle\frac{1}{c(\vec{x},t)}\displaystyle\int d\vec{v} f(\vec{x},\vec{v},t) \chi_k(\vec{x},\vec{v},t)$



and the equipartition theorem is considered, the temperature can be estimated by integrating the kinetic energy weighted by the velocity distribution divided by the gas constant:

$T(\vec{x},t) = \displaystyle\frac{m}{3R\rho}\displaystyle\int (\vec{v}\cdot\vec{v})f(\vec{x},\vec{v},t)d\vec{v}$

ID:(8460, 0)



Tension tensor

Equation

>Top, >Model


If the parameters are calculated by averaging over the speed using

$ \chi_k(\vec{x},t) =\displaystyle\frac{1}{c(\vec{x},t)}\displaystyle\int d\vec{v} f(\vec{x},\vec{v},t) \chi_k(\vec{x},\vec{v},t)$



the flow tensor is calculated by integrating the velocity distribution function on all velocities by weighing the velocity differences:

$\sigma_{ij} = m\displaystyle\int (v_i-u_i)(v_j-u_j)f(\vec{x},\vec{v},t)d\vec{v}$

ID:(8461, 0)



Discretization function

Equation

>Top, >Model


In the case of the discretization in the LBM models we work not with functions of the speed if not with discrete components. In this way the i component is defined by:

$f_i(\vec{x},t)=w_if(\vec{x},\vec{v}_i,t)$

where w_i is the relative weight.

ID:(8466, 0)



Densidad del Gas

Equation

>Top, >Model


la densidad en un punto $\vex{x}$ y tiempo se calcula simplemente sumando todas las distribuciones de particulas $f_i$ en dicho punto y tiempo:

ID:(8492, 0)



Densidad de momento del gas

Equation

>Top, >Model


Con la descritización

$f_i(\vec{x},t)=w_if(\vec{x},\vec{v}_i,t)$



la ecuación

$\vec{u}(\vec{x},t) = \displaystyle\frac{m}{\rho}\int \vec{v}f(\vec{x},\vec{v},t)d\vec{v}$



pasa a ser

$\rho(\vec{x},t)\vec{u}(\vec{x},t)=m\sum_i\vec{e}_if_i(\vec{x},t)$

ID:(8493, 0)



Temperatura del Gas

Equation

>Top, >Model


la densidad en un punto $\vec{x}$ y tiempo se calcula simplemente sumando todas las distribuciones de particulas $f_i$ en dicho punto y tiempo:

$T(\vec{x},t)=\displaystyle\frac{m}{3R\rho}\sum_i(\vec{e}_i\cdot\vec{e}_i)f_i(\vec{x},t)$

ID:(8897, 0)



Boltzmann equation

Equation

>Top, >Model


The Boltzmann function describes the transport of a particle system described by the velocity distribution function:

$\displaystyle\frac{\partial f}{\partial t}+v_i\displaystyle\frac{\partial f}{\partial x_i}=C(f)$

Where the term C describes the interaction (collisions) between them.

ID:(8462, 0)



Teoría de Grad de los 13 momentos

Equation

>Top, >Model


La distribución de velocidades se puede representar como un polinomio ortogoan de Hermite

$f^N(\vec{x},\vec{v},t)=\omega(\vec{v})\displaystyle\sum_{n=0}^N\displaystyle\frac{1}{n!}a^{(n)}(\vec{x},t)\mathcal{H}(\vec{v})$

ID:(8463, 0)



Coeficiente de Orden 0

Equation

>Top, >Model


El coeficiente de orden cero es

$a^{(0)}=\displaystyle\int f(\vec{x},\vec{v},t)d\vec{v}=\rho$

ID:(8464, 0)



Coeficiente de Orden 1

Equation

>Top, >Model


El coeficiente de orden cero es

$a^{(1)}=\displaystyle\int \vec{v}f(\vec{x},\vec{v},t)d\vec{v}=\rho\vec{u}$

ID:(8465, 0)



Coeficientes

Equation

>Top, >Model


Los coeficientes son:

$a^{(n)}(\vec{x},\vec{v},t)=\displaystyle\int f(\vec{x},\vec{v},t)\mathcal{H}^{(n)}(\vec{v})d\vec{v}=\displaystyle\sum_if_i(\vec{x},t)\mathcal{H}^{(n)}(\vec{v})$

ID:(8467, 0)