Processing math: 100%
User: No user logged in.


Electrocardiograma

Storyboard

>Model

ID:(336, 0)



Circular motion in magnetic field

Equation

>Top, >Model


La ecuaciĆ³n de movimiento se deriva del equilibrio entre la fuerza generada por the magnetic flux density (B) actuando sobre the charge (q) y the particle mass (m), que se desplaza con the particle speed (v) a the radius (r). Esto se expresa mediante la siguiente relaciĆ³n:

m \displaystyle\frac{ v ^2}{ r }= q v B

B
Magnetic flux density
kg/C s
5512
m
Particle mass
kg
5516
v
Particle speed
m/s
8630
r
Radius
m
8755
q
Test charge
C
8746
&F = q &E + &v # &B m * v ^2/ r = q * v * B F = q * v * B *sin( theta ) r = m * v /( q * B )thetaQEF&FB&Bmvrrvq

ID:(3229, 0)



Electrocardiogram

Image

>Top


ID:(1938, 0)



Heart

Description

>Top


ID:(804, 0)



Lorenz Law

Equation

>Top, >Model


The force \vec{F} that represents mathematically as current the electric fields \vec{E} and magnetic \vec{B} on a particle is called Lorentz's law. If the particle charge is q and it has a velocity \vec{v} the Lorentz force will be

\vec{F} = q ( \vec{E} + \vec{v} \times \vec{B} )

ID:(3219, 0)



Magnitude of the magnetic component of the Lorentz force

Equation

>Top, >Model


The force (F), which generates the magnetic flux density (B) on the charge (q), moving under a angle between speed and magnetic field (\theta) with the speed (v), is expressed as:

F = q v B \sin \theta

\theta
Angle between speed and magnetic field
rad
5513
F
Force
N
4975
B
Magnetic flux density
kg/C s
5512
v
Speed
m/s
6029
q
Test charge
C
8746
&F = q &E + &v # &B m * v ^2/ r = q * v * B F = q * v * B *sin( theta ) r = m * v /( q * B )thetaQEF&FB&Bmvrrvq

ID:(3873, 0)



Phases of Heartbeat

Image

>Top


ID:(1939, 0)



Polarization during Heartbeat

Image

>Top


ID:(1940, 0)



Radius of the orbit in the magnetic field

Equation

>Top, >Model


The orbit at a radius of gyration of particle in magnetic field (r) depends on the particle mass (m), the speed (v), the charge (Q), and the magnetic flux density (B), and is described by the following relationship:

r =\displaystyle\frac{ m v }{ q B }

B
Magnetic flux density
kg/C s
5512
m
Particle mass
kg
5516
r
Radius of gyration of particle in magnetic field
m
5514
v
Speed
m/s
6029
q
Test charge
C
8746
&F = q &E + &v # &B m * v ^2/ r = q * v * B F = q * v * B *sin( theta ) r = m * v /( q * B )thetaQEF&FB&Bmvrrvq

None

ID:(3874, 0)