Electrocardiograma

Storyboard

>Model

ID:(336, 0)



Circular motion in magnetic field

Equation

>Top, >Model


La ecuación de movimiento se deriva del equilibrio entre la fuerza generada por the magnetic flux density ($B$) actuando sobre the charge ($q$) y the particle mass ($m$), que se desplaza con the particle speed ($v$) a the radius ($r$). Esto se expresa mediante la siguiente relación:

$ m \displaystyle\frac{ v ^2}{ r }= q v B $

$q$
Charge
$C$
5460
$B$
Magnetic flux density
$kg/C s$
5512
$m$
Particle mass
$kg$
5516
$v$
Particle speed
$m/s$
8630
$r$
Radius
$m$
8755

ID:(3229, 0)



Electrocardiogram

Image

>Top


ID:(1938, 0)



Heart

Description

>Top


ID:(804, 0)



Lorenz Law

Equation

>Top, >Model


The force \vec{F} that represents mathematically as current the electric fields \vec{E} and magnetic \vec{B} on a particle is called Lorentz's law. If the particle charge is q and it has a velocity \vec{v} the Lorentz force will be

$ \vec{F} = q ( \vec{E} + \vec{v} \times \vec{B} )$

ID:(3219, 0)



Magnitude of the magnetic component of the Lorentz force

Equation

>Top, >Model


The force ($F$), which generates the magnetic flux density ($B$) on the charge ($q$), moving under a angle between speed and magnetic field ($\theta$) with the speed ($v$), is expressed as:

$ F = q v B \sin \theta $

$\theta$
Angle between speed and magnetic field
$rad$
5513
$q$
Charge
$C$
5460
$F$
Force
$N$
4975
$B$
Magnetic flux density
$kg/C s$
5512
$v$
Speed
$m/s$
6029

ID:(3873, 0)



Phases of Heartbeat

Image

>Top


ID:(1939, 0)



Polarization during Heartbeat

Image

>Top


ID:(1940, 0)



Radius of the orbit in the magnetic field

Equation

>Top, >Model


The orbit at a radius of gyration of particle in magnetic field ($r$) depends on the particle mass ($m$), the speed ($v$), the charge ($Q$), and the magnetic flux density ($B$), and is described by the following relationship:

$ r =\displaystyle\frac{ m v }{ q B }$

$q$
Charge
$C$
5460
$B$
Magnetic flux density
$kg/C s$
5512
$m$
Particle mass
$kg$
5516
$r$
Radius of gyration of particle in magnetic field
$m$
5514
$v$
Speed
$m/s$
6029

None

ID:(3874, 0)