Circular motion in magnetic field
Equation
La ecuación de movimiento se deriva del equilibrio entre la fuerza generada por the magnetic flux density ($B$) actuando sobre the charge ($q$) y the particle mass ($m$), que se desplaza con the particle speed ($v$) a the radius ($r$). Esto se expresa mediante la siguiente relación:
$ m \displaystyle\frac{ v ^2}{ r }= q v B $ |
ID:(3229, 0)
Lorenz Law
Equation
The force
$ \vec{F} = q ( \vec{E} + \vec{v} \times \vec{B} )$ |
ID:(3219, 0)
Magnitude of the magnetic component of the Lorentz force
Equation
The force ($F$), which generates the magnetic flux density ($B$) on the charge ($q$), moving under a angle between speed and magnetic field ($\theta$) with the speed ($v$), is expressed as:
$ F = q v B \sin \theta $ |
ID:(3873, 0)
Radius of the orbit in the magnetic field
Equation
The orbit at a radius of gyration of particle in magnetic field ($r$) depends on the particle mass ($m$), the speed ($v$), the charge ($Q$), and the magnetic flux density ($B$), and is described by the following relationship:
$ r =\displaystyle\frac{ m v }{ q B }$ |
None
ID:(3874, 0)