Ecuación de Transferencia Radiativa
Storyboard 
El transporte de fotones por materia (incluido tejido biologico) puede ser modelado mediante la ecuación de transporte radiativo (Radiative transfer equation - RTE).
ID:(1033, 0)
Ecuación de Transferencia Radiativa
Description 
El transporte de fotones por materia (incluido tejido biologico) puede ser modelado mediante la ecuación de transporte radiativo (Radiative transfer equation - RTE).
Variables
Calculations
Calculations
Equations
Examples

cell002
(ID 8562)
The spectral radiance
u}
u
If the spectral radiance is integrated in the frequency, the total radiance is obtained:
| $L_i(\vec{x},\hat{n},t)=\displaystyle\int d\nu L_{i,\nu}(\vec{x},\hat{n},t)$ |
(ID 8482)

cell003
(ID 8563)
The integration of the radiance
| $\Phi(\vec{x},t)=\displaystyle\int_{4\pi} L(\vec{x},\hat{n},t)d\Omega=\sum_iL_i(\vec{x},\hat{n},t)$ |
(ID 8483)

cell004
(ID 8564)
Radiance is the derivative of radiative flux at the angle and projected surface section
| $L_i(\vec{x},t)=\displaystyle\frac{\partial^2\Phi_i(\vec{x},t)}{\partial\Omega\partial S\cos\theta}$ |
(ID 8486)
The radiative flux is the radiative energy that by time is irradiated:
| $\Phi(\vec{x},t)=\displaystyle\frac{\partial Q}{\partial t}$ |
(ID 8485)
The radiative intensity is the radiative flux per element of solid angle:
| $I_{\Omega}=\displaystyle\frac{\partial\Phi}{\partial\Omega}$ |
(ID 8484)
The photon transport equation is
| $\displaystyle\frac{1}{c}\displaystyle\frac{\partial}{\partial t}L(\vec{x},\hat{n},t)+\hat{n}\cdot\nabla L(\vec{x},\hat{n},t)=-\mu_tL(\vec{x},\hat{n},t)+\mu_s\int_{4\pi}L(\vec{x},\hat{n}_h,t)P(\hat{n}_h,\hat{n})d\Omega_h+S(\vec{x},\hat{n},t)$ |
where
(ID 8487)
ID:(1033, 0)
