Ecuación de Transferencia Radiativa

Storyboard

El transporte de fotones por materia (incluido tejido biologico) puede ser modelado mediante la ecuación de transporte radiativo (Radiative transfer equation - RTE).

>Model

ID:(1033, 0)



Geometrias

Definition

![cell002](showImage.php)

cell002

ID:(8562, 0)



Proyección de D3 a D2

Image

![cell003](showImage.php)

cell003

ID:(8563, 0)



Definición de Bordes en D2Q7

Note

![cell004](showImage.php)

cell004

ID:(8564, 0)



Ecuación de Transferencia Radiativa

Description

El transporte de fotones por materia (incluido tejido biologico) puede ser modelado mediante la ecuación de transporte radiativo (Radiative transfer equation - RTE).

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units

Calculations


First, select the equation:   to ,  then, select the variable:   to 

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

 Variable   Given   Calculate   Target :   Equation   To be used



Equations


Examples

![cell002](showImage.php)

cell002

(ID 8562)

The spectral radiance L_{\Omega,
u}
is the energy per area of the photons of frequency
u
emitted at a solid angle d\Omega.

If the spectral radiance is integrated in the frequency, the total radiance is obtained:

$L_i(\vec{x},\hat{n},t)=\displaystyle\int d\nu L_{i,\nu}(\vec{x},\hat{n},t)$

(ID 8482)

![cell003](showImage.php)

cell003

(ID 8563)

The integration of the radiance L on the solid angle d\Omega gives us the radiative flux \Phi

$\Phi(\vec{x},t)=\displaystyle\int_{4\pi} L(\vec{x},\hat{n},t)d\Omega=\sum_iL_i(\vec{x},\hat{n},t)$

(ID 8483)

![cell004](showImage.php)

cell004

(ID 8564)

Radiance is the derivative of radiative flux at the angle and projected surface section S\cos\theta

$L_i(\vec{x},t)=\displaystyle\frac{\partial^2\Phi_i(\vec{x},t)}{\partial\Omega\partial S\cos\theta}$

(ID 8486)

The radiative flux is the radiative energy that by time is irradiated:

$\Phi(\vec{x},t)=\displaystyle\frac{\partial Q}{\partial t}$

(ID 8485)

The radiative intensity is the radiative flux per element of solid angle:

$I_{\Omega}=\displaystyle\frac{\partial\Phi}{\partial\Omega}$

(ID 8484)

The photon transport equation is

$\displaystyle\frac{1}{c}\displaystyle\frac{\partial}{\partial t}L(\vec{x},\hat{n},t)+\hat{n}\cdot\nabla L(\vec{x},\hat{n},t)=-\mu_tL(\vec{x},\hat{n},t)+\mu_s\int_{4\pi}L(\vec{x},\hat{n}_h,t)P(\hat{n}_h,\hat{n})d\Omega_h+S(\vec{x},\hat{n},t)$

where \mu_t is the absorption coefficient and scattering, c the velocity of light, P(\hat{n}',\hat{n}) is the phase function that gives the probability that a photon traveling in the direction \hat{n} is deflected in the direction \hat{n}'.

(ID 8487)


ID:(1033, 0)