Modelo de Ising

Storyboard

Ising's model creates an iterative algorithm to solve the problem of permanent magnetization. A simplified version is shown in this chapter. The real one, which was Ising's thesis, shows that a one-dimensional chain cannot maintain a magnetic field without permanent magnetization. However, it is also the problem for a two-dimensional system and shows that in that case there is permanent magnetization.

>Model

ID:(540, 0)



Modelo de Ising

Model

Ising's model creates an iterative algorithm to solve the problem of permanent magnetization. A simplified version is shown in this chapter. The real one, which was Ising's thesis, shows that a one-dimensional chain cannot maintain a magnetic field without permanent magnetization. However, it is also the problem for a two-dimensional system and shows that in that case there is permanent magnetization.

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$H$
H
Campo magnético
kg/C s
$H_i$
H_i
Campo magnético de Ising
kg/C s
$H_{eff}$
H_eff
Campo magnético efectivo
kg/C s
$H_0$
H_0
Campo magnético externo
kg/C s
$\bar{H}$
mH
Campo magnético medio
kg/C s
$J$
J
Constante de acoplamiento
kg m^2
$k_B$
k_B
Constante de Boltzmann
kg m^2/s^2 K
$E$
E
Energía total
J
$\beta$
beta
Factor $\beta$
C m^2/s
$N$
N
Números de partículas
-
$n$
n
Números de vecinos con que existe interacción
-
$\gamma$
gamma
Radio giroscópico
C/kg
$S_j$
S_j
Spin de la partícula $j$
kg m^2/s
$S_k$
S_k
Spin de la partícula $k$
kg m^2/s
$\bar{S}$
mS
Spin medio
kg m^2/s
$\bar{S}_i$
mS_i
Spin medio, iteración $k$
kg m^2/s
$\bar{S}_{i+1}$
mS_i1
Spin medio, iteración $k+1$
kg m^2/s
$T$
T
Temperatura
K
$T_i$
T_i
Temperatura de Ising
K

Calculations


First, select the equation:   to ,  then, select the variable:   to 

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

 Variable   Given   Calculate   Target :   Equation   To be used



Equations


Examples


ID:(540, 0)