Oscillators of a Spring

Storyboard

In the case of the spring the force is proportional to the elongation of the spring so that the equations of motion are linear and the frequency of the oscillation is independent of the amplitude. This is the key to generate an oscillation that does not depend on the fact that the friction decreases over time. This is why old clocks used (circular) springs to generate stable oscillations to measure elapsed time.

>Model

ID:(1425, 0)



Oscillators of a Spring

Storyboard

In the case of the spring the force is proportional to the elongation of the spring so that the equations of motion are linear and the frequency of the oscillation is independent of the amplitude. This is the key to generate an oscillation that does not depend on the fact that the friction decreases over time. This is why old clocks used (circular) springs to generate stable oscillations to measure elapsed time.

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$x$
x
Elongation of the Spring
m
$\omega$
omega
Frecuencia angular del resorte
rad/s
$k$
k
Hooke Constant
N/m
$m_i$
m_i
Inertial Mass
kg
$x_0$
x_0
Initial amplitude of the oscillation
m
$p$
p
Moment
kg m/s
$v$
v
Oscillator speed
m/s
$T$
T
Period
s
$V$
V
Potential Energy
J
$\nu$
nu
Sound frequency
Hz
$t$
t
Time
s
$E$
E
Total Energy
J
$K$
K
Total Kinetic Energy
J

Calculations


First, select the equation:   to ,  then, select the variable:   to 

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

 Variable   Given   Calculate   Target :   Equation   To be used



Equations

En el caso el stico (resorte) la fuerza es

equation=3242

con k la constante del resorte y x la elongaci n/compresi n del resorte. La variaci n de la energ a potencial es

equation=1136\\n\\nLa diferencia\\n\\n

$\Delta x = x_2 - x_1$

\\n\\ncorresponde al camino recorrido por lo que\\n\\n

$\Delta W=k,x,\Delta x=k(x_2-x_1)\displaystyle\frac{(x_1+x_2)}{2}=\displaystyle\frac{k}{2}(x_2^2-x_1^2)$



y con ello la energ a potencial el stica es

equation

En el caso el stico (resorte) la fuerza es

equation=3242

con k la constante del resorte y x la elongaci n/compresi n del resorte. La variaci n de la energ a potencial es

equation=1136\\n\\nLa diferencia\\n\\n

$\Delta x = x_2 - x_1$

\\n\\ncorresponde al camino recorrido por lo que\\n\\n

$\Delta W=k,x,\Delta x=k(x_2-x_1)\displaystyle\frac{(x_1+x_2)}{2}=\displaystyle\frac{k}{2}(x_2^2-x_1^2)$



y con ello la energ a potencial el stica es

equation

Since kinetic energy is equal to

equation=3244

and momentum is

equation=10283

we can express it as

$K_t=\displaystyle\frac{1}{2} m_i v^2=\displaystyle\frac{1}{2} m_i \left(\displaystyle\frac{p}{m_i}\right)^2=\displaystyle\frac{p^2}{2m_i}$



or

equation

Using the complex number

equation=14115

introduced in

equation=14075

we obtain

$\dot{z} = i\omega_0 z = i \omega_0 x_0 \cos \omega_0 t - \omega_0 x_0 \sin \omega_0 t$



thus, the velocity is obtained as the real part

equation


Examples


mechanisms

One of the systems it depicts is that of a spring. This is associated with the elastic deformation of the material from which the spring is made. By "elastic," we mean a deformation that, upon removing the applied stress, allows the system to fully regain its original shape. It's understood that it doesn't undergo plastic deformation.

Since the energy of the spring is given by

$E=\displaystyle\frac{1}{2}m_i v^2+\displaystyle\frac{1}{2}k x^2$



the period will be equal to

$T=2\pi\sqrt{\displaystyle\frac{m_i}{k}}$



and thus, the angular frequency is

equation=1242


model

The total Energy ($E$) corresponds to the sum of the total Kinetic Energy ($K$) and the potential Energy ($V$):

kyon

The kinetic energy of a mass $m$

equation=3244

can be expressed in terms of momentum as

kyon

En el caso el stico (resorte) la fuerza es

equation=3242

la energ a

equation=1136

se puede mostrar que en este caso es

kyon

En el caso el stico (resorte) la fuerza es

equation=3242

la energ a

equation=1136

se puede mostrar que en este caso es

kyon

The product of the hooke Constant ($k$) and the inertial Mass ($m_i$) is called the frecuencia angular del resorte ($\omega$) and is defined as:

kyon

The moment ($p$) is calculated from the inertial Mass ($m_i$) and the speed ($v$) using

kyon

The period ($T$) is determined from the inertial Mass ($m_i$) and the hooke Constant ($k$) by means of:

kyon

The sound frequency ($\nu$) corresponds to the number of times an oscillation occurs within one second. The period ($T$) represents the time it takes for one oscillation to occur. Therefore, the number of oscillations per second is:

kyon

Frequency is indicated in Hertz (Hz).

The angular frequency ($\omega$) is with the period ($T$) equal to

kyon

The relationship between the angular frequency ($\omega$) and the sound frequency ($\nu$) is expressed as:

kyon

With the description of the oscillation using

equation=14115

the real part corresponds to the temporal evolution of the amplitude

kyon

When we extract the real part of the derivative of the complex number representing the oscillation

equation=14075

whose real part corresponds to the velocity

kyon


>Model

ID:(1425, 0)