Usuario:


Aceleración angular instantanea

Storyboard

Para describir cómo evoluciona la velocidad angular en el tiempo, es necesario estudiar su variación a lo largo del tiempo.La relación de la variación de la velocidad angular equivale al cambio en la velocidad angular en el tiempo transcurrido, que al dividirse por este, corresponde a la aceleración angular.Para un intervalo de tiempo infinitesimal, la aceleración angular corresponde a la aceleración angular instantánea.

>Modelo

ID:(1452, 0)



Mecanismos

Concepto


ID:(15415, 0)



Aceleración angular como derivada

Concepto

Si se toma un intervalo de tiempo $t$ con una velocidad angular $\omega(t)$ y se observa un punto en un momento futuro $t+\Delta t$ con una velocidad angular $\omega(t+\Delta t)$, la aceleración angular puede estimarse como la variación

$\omega(t+\Delta t)-\omega(t)$



en el transcurso del tiempo $\Delta t$:

$\alpha\sim\displaystyle\frac{\omega(t+\Delta t)-\omega(t)}{\Delta t}$



A medida que el valor de $\Delta t$ disminuye, la aceleración toma el papel de la tangente a la curva de velocidad en ese momento:

Esto generaliza lo que ya se ha visto en el caso de la aceleración angular constante.

ID:(11413, 0)



Aceleración tangencial, regla de la mano derecha

Imagen

La dirección de la aceleración tangencial puede determinarse utilizando la regla de la mano derecha, donde los dedos se orientan hacia el eje y luego se giran en dirección al radio:

ID:(11600, 0)



Modelo

Concepto


ID:(15426, 0)



Aceleración angular instantanea

Modelo

Para describir cómo evoluciona la velocidad angular en el tiempo, es necesario estudiar su variación a lo largo del tiempo. La relación de la variación de la velocidad angular equivale al cambio en la velocidad angular en el tiempo transcurrido, que al dividirse por este, corresponde a la aceleración angular. Para un intervalo de tiempo infinitesimal, la aceleración angular corresponde a la aceleración angular instantánea.

Variables

Símbolo
Texto
Variable
Valor
Unidades
Calcule
Valor MKS
Unidades MKS
$\alpha$
alpha
Aceleración angular instantánea
rad/s^2
$vec{alpha}$
&alpha
Aceleración angular instantánea (vector)
rad/s^2
$\vec{a}$
&a
Aceleración instantánea (vector)
m/s^2
$\vec{r}$
&r
Radio (vector)
m
$t$
t
Tiempo
s
$t_0$
t_0
Tiempo inicial
s
$\omega$
omega
Velocidad angular
rad/s
$\vec{\omega}$
&omega
Velocidad angular
rad/s
$\omega_0$
omega_0
Velocidad angular inicial
rad/s
$\omega$
omega
Velocidad angular instantánea
rad/s

Cálculos


Primero, seleccione la ecuación:   a ,  luego, seleccione la variable:   a 

Símbolo
Ecuación
Resuelto
Traducido

Cálculos

Símbolo
Ecuación
Resuelto
Traducido

 Variable   Dado   Calcule   Objetivo :   Ecuación   A utilizar



Ecuaciones

Dado que la aceleraci n tangencial es

$ a = r \alpha $



Si el versor del eje es $\hat{n}$ y el radial es $\hat{r}$, el versor tangencial puede calcularse mediante el producto cruz:

$\hat{t} = \hat{n} \times \hat{r}$



En consecuencia, considerando que

$\vec{a} = a \hat{t}$

,

$\vec{r} = r \hat{r}$

y

$\vec{\alpha} = \alpha \hat{n}$

,

podemos deducir que

$\vec{a} = a \hat{t} = a \hat{n} \times \hat{r} = r \alpha \hat{n} \times \hat{r} = \vec{\alpha} \times \vec{r}$

,

lo que se traduce en

$ \vec{a} = \vec{\alpha} \times \vec{r} $

(ID 11598)


Ejemplos


(ID 15415)

Si se toma un intervalo de tiempo $t$ con una velocidad angular $\omega(t)$ y se observa un punto en un momento futuro $t+\Delta t$ con una velocidad angular $\omega(t+\Delta t)$, la aceleraci n angular puede estimarse como la variaci n

$\omega(t+\Delta t)-\omega(t)$



en el transcurso del tiempo $\Delta t$:

$\alpha\sim\displaystyle\frac{\omega(t+\Delta t)-\omega(t)}{\Delta t}$



A medida que el valor de $\Delta t$ disminuye, la aceleraci n toma el papel de la tangente a la curva de velocidad en ese momento:

Esto generaliza lo que ya se ha visto en el caso de la aceleraci n angular constante.

(ID 11413)

La integral de una funci n corresponde al rea bajo la curva que define dicha funci n. Por lo tanto, la integral de la aceleraci n angular entre los tiempos $t_0$ y $t$ corresponde a la variaci n de la velocidad angular entre la velocidad angular inicial $\omega_0$ y $\omega$.

Por lo tanto, utilizando aceleración angular instantánea $rad/s^2$, tiempo $s$, tiempo inicial $s$, velocidad angular $rad/s$ y velocidad angular inicial $rad/s$, obtenemos:

$ \omega = \omega_0 +\displaystyle\int_{t_0}^t \alpha\,d\tau $



Lo cual se muestra en el siguiente gr fico:

(ID 11415)

La direcci n de la aceleraci n tangencial puede determinarse utilizando la regla de la mano derecha, donde los dedos se orientan hacia el eje y luego se giran en direcci n al radio:

(ID 11600)


(ID 15426)


ID:(1452, 0)