Lever Law

Storyboard

The lever law corresponds to a system exposed to two equal and opposite torques with which the system remains in equilibrium.

>Model

ID:(1457, 0)



Lever Law

Model

The lever law corresponds to a system exposed to two equal and opposite torques with which the system remains in equilibrium.

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$d_1$
d_1
Force - axis distance (arm) 1
m
$d_2$
d_2
Force - axis distance (arm) 2
m
$F_1$
F_1
Force 1
N
$F_2$
F_2
Force 2
N
$m_1$
m_1
Mass 1
kg
$m_2$
m_2
Mass 2
kg
$T_1$
T_1
Torque 1
N m
$T_2$
T_2
Torque 2
N m

Calculations


First, select the equation:   to ,  then, select the variable:   to 

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

 Variable   Given   Calculate   Target :   Equation   To be used



Equations

In the case of a balance, a gravitational force acts on each arm, generating a torque

$ T = r F $



If the lengths of the arms are $d_i$ and the forces are $F_i$ with $i=1,2$, the equilibrium condition requires that the sum of the torques be zero:

$\displaystyle\sum_i \vec{T}_i=0$



Therefore, considering that the sign of each torque depends on the direction in which it induces rotation,

$d_1F_1-d_2F_2=0$



which results in

$ d_1 F_1 = d_2 F_2 $

.

(ID 3250)

Si se deriva en el tiempo la relaci n para el momento angular

$ L = r p $



para el caso de que el radio sea constante

$T=\displaystyle\frac{dL}{dt}=r\displaystyle\frac{dp}{dt}=rF$



por lo que

$ T = r F $

(ID 4431)

Si se deriva en el tiempo la relaci n para el momento angular

$ L = r p $



para el caso de que el radio sea constante

$T=\displaystyle\frac{dL}{dt}=r\displaystyle\frac{dp}{dt}=rF$



por lo que

$ T = r F $

(ID 4431)


Examples


(ID 15845)

Since the torque generated by the gravitational force and the lever arm is

$ T = r F $



on each side of the balance, it must cancel out in the case of equilibrium to achieve balance:



If we assume that on one side we have the force 1 ($F_1$) and the force - axis distance (arm) 1 ($d_1$), and on the other side the force 2 ($F_2$) and the force - axis distance (arm) 2 ($d_2$), we can establish the well-known lever law as follows:

$ d_1 F_1 = d_2 F_2 $

(ID 15847)


(ID 15846)


ID:(1457, 0)