Vector Algebra

Storyboard

Many of the variables used in physics are described by vectors. This is because we live in a three-dimensional world so positions and directions have to be described by more than one parameter.

As the variables are used in equations, it is necessary to know how to work with entities as vectors both in the formulation and manipulation of these. This is called vector algebra.

>Model

ID:(1257, 0)



Vector Algebra

Storyboard

Many of the variables used in physics are described by vectors. This is because we live in a three-dimensional world so positions and directions have to be described by more than one parameter.\\nAs the variables are used in equations, it is necessary to know how to work with entities as vectors both in the formulation and manipulation of these. This is called vector algebra.

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$\vec{a}$
&a
Component of the Vector $\vec{a}$ in $\hat{x}$
m
$\hat{n}$
&n
Componente $\hat{x}$ del Vector resta de $\vec{b}$ de $\vec{a}$
-
$\mid\vec{a}\mid$
a
Magnitud del vector
m
$\vec{b}$
&b
Vector
m
$c_z$
c_z
Vector
m
$\hat{a}_1$
&na_1
Vector
m
$c_y$
c_y
Vector multiplicado por un escalar
m
$b_y$
b_y
Vector que resulta de la suma
m

Calculations


First, select the equation:   to ,  then, select the variable:   to 

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

 Variable   Given   Calculate   Target :   Equation   To be used



Equations


Examples

La suma de dos vectores \vec{a}=(a_x,a_y,a_z) y \vec{b}=(b_x,b_y,b_z) se realiza sumando cada una de las coordenadas:

equation

La primera componente de la resta del vector $\vec{b}=(b_1,b_2,b_3)$ de $\vec{a}=(a_1,a_2,a_3)$ es

$c_1=a_1+b_1$

La multiplicaci n de un vector \vec{a}=(a_x,a_y,a_z) por una constante \lambda se llega acabo multiplicando cada una de las coordenadas por la constante:

equation

Un Versor es un Vector de largo unitario. Se le puede calcular de cualquier vector simplemente dividiendo dicho vector por la magnitud de este.

Para diferenciar los versores de los vectores generales no se les dibuja una flecha si no que un tipo de gorro.

Por ello el versor $\hat{a}=(\hat{a}_x,\hat{a}_y,\hat{a}_z)$ calculado del vector $\vec{a}=(a_x,a_y,a_z)$ como:

equation

donde el modulo del vector esta definido en dos dimensiones por

equation=4808

y en tres dimensiones por

equation=4809

El largo del vector \vec{a}=(a_x,a_y,a_z) se puede calcular mediante:

equation


>Model

ID:(1257, 0)