Killing Cancer

Definition

ID:(1491, 0)



DNA chain

Image

ID:(2702, 0)



Direct Method

Quote

ID:(240, 0)



oncology005

Exercise

![oncology005](showImage.php)

oncology005

ID:(7374, 0)



Indirect Method

Equation

ID:(241, 0)



oncology006

Script

![oncology006](showImage.php)

oncology006

ID:(7375, 0)



oncology016

Variable

![oncology016](showImage.php)

oncology016

ID:(7385, 0)



oncology017

Audio

![oncology017](showImage.php)

oncology017

ID:(7386, 0)



oncology018

Video

![oncology018](showImage.php)

oncology018

ID:(7387, 0)



Probability of DNA Damage

Matrix

ID:(849, 0)



Types of DNA Damage

Html

ID:(1722, 0)



Electron LET

Php

ID:(1503, 0)



Examples of LET

Iframe

ID:(1486, 0)



Situation in Tissue

Simulation

ID:(1502, 0)



Survival of Cells

Table

ID:(2708, 0)



Daño mediante Radiación Ionizante

Description

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units

Calculations


First, select the equation:   to ,  then, select the variable:   to 

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

 Variable   Given   Calculate   Target :   Equation   To be used



Equations


Examples

(ID 2702)

![oncology005](showImage.php)

oncology005

(ID 7374)

![oncology006](showImage.php)

oncology006

(ID 7375)

![oncology016](showImage.php)

oncology016

(ID 7385)

![oncology017](showImage.php)

oncology017

(ID 7386)

![oncology018](showImage.php)

oncology018

(ID 7387)

(ID 1503)

El camino medio que recorre una part cula por una esfera se puede calcular primero considerando el camino medio en un disco de radio $r$ en el plano $y-z$ lo que es

$\bar{r}_2=\displaystyle\frac{2\int_0^r\sqrt{r^2-z`2}dz}{\int_0^r dz}=\displaystyle\frac{\pi r}{2}$

para luego promediar este valor en el eje $x$ considerando que la cantidad de puntos es proporcional a la altura de la esfera por lo que

$\bar{r}_3=\displaystyle\frac{\int_0^r\sqrt{r^2-x^2}\displaystylefrac{\sqrt{r^2-x^2}\pi}{2}dx}{\int_0^r \sqrt{r^2-x^2}dx}=\displaystyle\frac{\pi r^2}{2}=\displaystyle\frac{4}{3\pi}r$

lo que equivale a aproximadamente $42\%$ del radio $r$.

(ID 7400)


ID:(734, 0)