Velocity of Sound in the Sea

Storyboard

The speed of sound in the sea depends on the pressure, temperature and salinity.

>Model

ID:(1548, 0)



Mechanisms

Iframe

>Top



Code
Concept

Mechanisms

ID:(15462, 0)



Speed of sound with depth

Concept

>Top


The speed of sound in the ocean varies with depth as shown in the graph:

The shape of the curve can vary depending on the time of year.

ID:(11814, 0)



Dependence on the speed of sound

Concept

>Top


The speed of sound in the ocean depends on the temperature and pressure as shown in the graph:

ID:(11815, 0)



Model

Top

>Top



Parameters

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$\theta_i$
theta_i
Angulo de incidente
rad
$\theta_r$
theta_r
Angulo de refracción
rad
$p$
p
Presión hidrostatica
Pa
$c_0$
c_0
Sound speed factor 0
m/s K^3
$c_1$
c_1
Sound speed factor 1
m/s K^2
$c_2$
c_2
Sound speed factor 2
m/s K #
$c_3$
c_3
Sound speed factor 3
m/s K
$c_4$
c_4
Sound speed factor 4
m/s Pa
$c_5$
c_5
Sound speed factor 5
m/s #
$c_6$
c_6
Sound speed factor 6
m/s
$c_i$
c_i
Velocidad de la luz en el medio incidente
m/s
$c_e$
c_e
Velocidad de la luz en el medio refractado
m/s

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$s$
s
Salinity
-
$c$
c
Speed of sound
m/s
$T$
T
Temperature
K

Calculations


First, select the equation: to , then, select the variable: to

Calculations

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

Variable Given Calculate Target : Equation To be used




Equations

#
Equation

$ c = c_0 T ^3- c_1 T ^2+( c_3 - c_2 s ) T + c_4 p + c_5 s - c_6 $

c = c_0 * T ^3- c_1 * T ^2+( c_3 - c_2 * s )* T + c_4 * p +c_5 * s - c_6


$\displaystyle\frac{ \sin\theta_i }{\sin \theta_r }=\displaystyle\frac{ c_i }{ c_e }$

sin( theta_i )/sin( theta_r )= c_i / c_e

ID:(15465, 0)



Ley de Snell en función de la velocidad

Equation

>Top, >Model


La relación entre los ángulos de incidencia y refractados indicados en la siguiente gráfica



se pueden escribir en función de la velocidad de la luz en cada medio c_i y c_e como

$\displaystyle\frac{ \sin\theta_i }{\sin \theta_r }=\displaystyle\frac{ c_i }{ c_e }$

$\theta_i$
Angulo de incidente
$rad$
5147
$\theta_r$
Angulo de refracción
$rad$
5148
$c_i$
Velocidad de la luz en el medio incidente
$m/s$
9822
$c_e$
Velocidad de la luz en el medio refractado
$m/s$
9823

Observando la imagen se nota que los senos de los angulos son respectivamente\\n\\n

$\sin\theta_i=\displaystyle\frac{c_i\Delta t}{d}$

y\\n\\n

$\sin\theta_e=\displaystyle\frac{c_e\Delta t}{d}$

\\n\\nSi se despeja en ambas ecuaciones la distancia d y se igualan ambas expresiones se tiene que\\n\\n

$d=\displaystyle\frac{c_i\Delta t}{\sin\theta_i}=\displaystyle\frac{c_e\Delta t}{\sin\theta_e}$



por lo que se tiene que

$\displaystyle\frac{ \sin\theta_i }{\sin \theta_r }=\displaystyle\frac{ c_i }{ c_e }$

ID:(3342, 0)



Sound velocity equation

Equation

>Top, >Model


In 1977, Clay and Medwin developed a model to estimate the speed of sound based on temperature, salinity, and pressure.

the speed of sound ($c$) can be estimated based on the presión hidrostatica ($p$), the temperature ($T$), and the salinity ($s$) using the following expression:

$ c = c_0 T ^3- c_1 T ^2+( c_3 - c_2 s ) T + c_4 p + c_5 s - c_6 $

$p$
Presión hidrostatica
$Pa$
8800
$s$
Salinity
$-$
8792
$c_0$
Sound speed factor 0
2.9e-4
$m/s K^3$
8793
$c_1$
Sound speed factor 1
0.2926
$m/s K^2$
8794
$c_2$
Sound speed factor 2
10
$m/s K$
8795
$c_3$
Sound speed factor 3
99.91
$m/s K$
8796
$c_4$
Sound speed factor 4
1.58e-6
$m/s Pa$
8797
$c_5$
Sound speed factor 5
4071.5
$m/s$
8798
$c_6$
Sound speed factor 6
9963.6
$m/s$
8799
$c$
Speed of sound
$m/s$
5073
$T$
Temperature
$K$
8791

where $c_i$ are empirical constants.

Reference: "Study of Absorption loss effects on acoustic wave propagation in shallow water using different empirical Models", Yasin Yousif Al-Aboosi, Mustafa Sami Ahmed, Nor Shahida Mohd Shah, and Nor Hisham Haji Khamis, ARPN Journal of Engineering and Applied Sciences, Vol. 12, No. 22, November 2017.

ID:(11816, 0)