Usuario:


Ejemplos

Storyboard

>Modelo

ID:(1344, 0)



Regresión Lineal

Descripción

>Top




plt.plot(x,y,'ro')
plt.axis([0,6,0,20])
plt.plot(np.unique(x),np.poly1d(np.polyfit(x,y,1))(np.unique(x)))
plt.show()


ID:(10380, 0)



Regresión Polinomial

Concepto

>Top


```

const a = tf.variable(tf.scalar(Math.random()));

const b = tf.variable(tf.scalar(Math.random()));

const c = tf.variable(tf.scalar(Math.random()));

const d = tf.variable(tf.scalar(Math.random()));

```

```

const numIterations = 75;

const learningRate = 0.5;

const optimizer = tf.train.sgd(learningRate);

```

```

function predict(x) {

// y = a * x ^ 3 + b * x ^ 2 + c * x + d

return tf.tidy(() => {

return a.mul(x.pow(tf.scalar(3, 'int32')))

.add(b.mul(x.square()))

.add(c.mul(x))

.add(d);

});

}

```

```

function loss(prediction, labels) {

// Having a good error function is key for training a machine learning model

const error = prediction.sub(labels).square().mean();

return error;

}

```

```

async function train(xs, ys, numIterations) {

for (let iter = 0; iter < numIterations; iter++) {

// optimizer.minimize is where the training happens.

// The function it takes must return a numerical estimate (i.e. loss)

// of how well we are doing using the current state of

// the variables we created at the start.

// This optimizer does the 'backward' step of our training process

// updating variables defined previously in order to minimize the

// loss.

optimizer.minimize(() => {

// Feed the examples into the model

const pred = predict(xs);

return loss(pred, ys);

});

// Use tf.nextFrame to not block the browser.

await tf.nextFrame();

}

}

```

```

async function learnCoefficients() {

const trueCoefficients = {a: -.8, b: -.2, c: .9, d: .5};

const trainingData = generateData(100, trueCoefficients);

// Plot original data

renderCoefficients('#data .coeff', trueCoefficients);

await plotData('#data .plot', trainingData.xs, trainingData.ys)

// See what the predictions look like with random coefficients

renderCoefficients('#random .coeff', {

a: a.dataSync()[0],

b: b.dataSync()[0],

c: c.dataSync()[0],

d: d.dataSync()[0],

});

const predictionsBefore = predict(trainingData.xs);

await plotDataAndPredictions(

'#random .plot', trainingData.xs, trainingData.ys, predictionsBefore);

// Train the model!

await train(trainingData.xs, trainingData.ys, numIterations);

// See what the final results predictions are after training.

renderCoefficients('#trained .coeff', {

a: a.dataSync()[0],

b: b.dataSync()[0],

c: c.dataSync()[0],

d: d.dataSync()[0],

});

const predictionsAfter = predict(trainingData.xs);

await plotDataAndPredictions(

'#trained .plot', trainingData.xs, trainingData.ys, predictionsAfter);

predictionsBefore.dispose();

predictionsAfter.dispose();

}

```

```

learnCoefficients();

```

ID:(10376, 0)