Application in Microscopes

Storyboard

The principle of the microscope is to capture the small image, which above as parallel beams and enlarge it with a biconvex lens to form a larger inverted real image.

>Model

ID:(299, 0)



Beam geometry in a lens, near object

Definition

In the event that the object is closer to the lens than the focal point, the diagram to determine image size and position is somewhat more complex. In this case the beams must be

projected from where they would have reached the object that radiates them
within the projection the same rules as in a real beam must be followed

In this case it is enough to diagram the same three beams again:

- parallel to the optical axis is refracted by the focus
- via the focus is refracted parallel to the optical axis
- via the origin of the continuous optical axis in a straight line

and the image is obtained in the same way:

ID:(9783, 0)



Lens Geometry

Image

Corrección con Lentes

ID:(1864, 0)



Geometry of the Beams on a Lens

Note

In the case of a biconvex lens a beam that reaches the lens

- parallel to the optical axis is refracted by the focus
- via the focus is refracted parallel to the optical axis
- via the origin of the continuous optical axis in a straight line

what in the case of an object at a distance greater than the photo corresponds to:

ID:(1856, 0)



Convex Lens

Quote

A convex lens is a lens that refracts the parallel beam of light that strikes parallel through its focus:

ID:(1855, 0)



Concave Lens

Exercise

Convex lenses are thinner in their center widening towards the edges.

The light beams that have a parallel impact are scattered as if the light were emitted in the lens focus.

ID:(1854, 0)



Situation of a Biconcave Lens

Equation

Lente Bi-Concavo grueso

ID:(1858, 0)



Diseño lente biconvexo

Script

Lente Bi-Convexo grueso

ID:(1857, 0)



Convex-Concave Lens Situation

Variable

Lente Concavo-Convexo grueso

ID:(1859, 0)



Concave-Convex Lens Situation

Audio

Lente Convexo-Concavo grueso

ID:(1860, 0)



Multiples lentes

Video

Cuando se acoplan dos lentes con sus respectivos focos, el primer lente genera una imagen que funciona como objeto para el segundo lente que a su vez genera una imagen de una imagen:

ID:(9465, 0)



Lens Simulator

Unit

Aqui va el applet ...

ID:(194, 0)



Refraction depending on the color of light

Code

The refractive index of glass can depend on the wavelength or frequency of light. In such cases, the glass is referred to as 'chromatic.' If it does not exhibit this property, it is called 'achromatic.'

The main issue with this property is that the focal point of a lens depends on the color of light. Therefore, an optical lens has the problem that if the eye can focus on one color, it will not be able to simultaneously focus on objects of other colors.

ID:(1626, 0)



Application in Microscopes

Description

The principle of the microscope is to capture the small image, which above as parallel beams and enlarge it with a biconvex lens to form a larger inverted real image.

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$n$
n
Air-Lens Refractive Index
-
$s_{lc}$
s_lc
Distancia de la imagen del lente cóncavo
m
$s_o$
s_o
Distancia del objeto al lente cóncavo
m
$f_{ccd}$
f_ccd
Foco del lente bi-cóncavo grueso
m
$f_{csd}$
f_csd
Foco del lente bi-cóncavo simétrico
m
$f_{vvd}$
f_vvd
Foco del lente bi-convexo grueso
m
$f_{vsd}$
f_vsd
Foco del lente bi-convexo simétrico
m
$f_{lc}$
f_lc
Foco del lente cóncavo
m
$f_{vcd}$
f_vcd
Foco del lente convexo-cóncavo grueso
m
$R$
R
Lens Radio
m
$d$
d
Lens Width
m
$a_o$
a_o
Object Size
m
$R_2$
R_2
Radio of the Lens, Image Side
m
$R_1$
R_1
Radio of the Lens, Source Side
m
$a_{lc}$
a_lc
Tamaño de la imagen en un lente cóncavo
m
$f_{cvs}$
f_cvs
Time
m

Calculations


First, select the equation:   to ,  then, select the variable:   to 

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

 Variable   Given   Calculate   Target :   Equation   To be used



Equations

Una relaci n se puede armar con los tri ngulos del lado del objeto. En este caso la similitud nos permite escribir que el tama o del objeto a_o es a la distancia del objeto s_o al foco f es como el tama o de la imagen a_i es a la distancia del foco f:\\n\\n

$\displaystyle\frac{a_o}{s_o-f}=\displaystyle\frac{a_i}{f}$



Con la relaci n de similitud de los tri ngulos

$\displaystyle\frac{ a_o }{ a_{lc} }=\displaystyle\frac{ s_o }{ s_{lc} }$



se puede mostrar que se cumple:

$\displaystyle\frac{1}{ f_{lc} }=\displaystyle\frac{1}{ s_o }+\displaystyle\frac{1}{ s_{lc} }$

(ID 3347)


Examples

In the event that the object is closer to the lens than the focal point, the diagram to determine image size and position is somewhat more complex. In this case the beams must be

projected from where they would have reached the object that radiates them
within the projection the same rules as in a real beam must be followed

In this case it is enough to diagram the same three beams again:

- parallel to the optical axis is refracted by the focus
- via the focus is refracted parallel to the optical axis
- via the origin of the continuous optical axis in a straight line

and the image is obtained in the same way:

(ID 9783)

Correcci n con Lentes

(ID 1864)

In the case of a biconvex lens a beam that reaches the lens

- parallel to the optical axis is refracted by the focus
- via the focus is refracted parallel to the optical axis
- via the origin of the continuous optical axis in a straight line

what in the case of an object at a distance greater than the photo corresponds to:

(ID 1856)

A convex lens is a lens that refracts the parallel beam of light that strikes parallel through its focus:

(ID 1855)

Por similitud de los tri ngulos de los tama os del objeto y la imagen y las posiciones del objeto y foco permite por similitud de tri ngulos mostrar que:

$\displaystyle\frac{1}{ f_{lc} }=\displaystyle\frac{1}{ s_o }+\displaystyle\frac{1}{ s_{lc} }$

(ID 3347)

For any lens you can draw characteristic beams with which you can similarly show that the sizes of the object and the image are in the same proportion as their distances to the optical element (lens or mirror).

If the object has a size a_o, it is at a distance s_o of the lens, the image is a size a_i and is at a distance s_i, by similarity of the triangles it can be shown that

$\displaystyle\frac{ a_o }{ a_{lc} }=\displaystyle\frac{ s_o }{ s_{lc} }$

(ID 3346)

Convex lenses are thinner in their center widening towards the edges.

The light beams that have a parallel impact are scattered as if the light were emitted in the lens focus.

(ID 1854)

Lente Bi-Concavo grueso

(ID 1858)

Lente Bi-Convexo grueso

(ID 1857)

Lente Concavo-Convexo grueso

(ID 1859)

Una caso especial es aquel en que los radios son iguales, o sea R=R_1=R_2. Por ello el foco se calcula de:

$\displaystyle\frac{1}{ f_{vsd} }=( n -1)\left(\displaystyle\frac{2}{ R }-\displaystyle\frac{( n -1) d }{ n R ^2}\right)$

(ID 3432)

Lente Convexo-Concavo grueso

(ID 1860)

Los lentes reales tienen un grosor que se debe considerar. Si el lente tiene un indice de refracci n n, un grosor en el centro de d y las curvaturas son R_1 y R_2, el foco f se calcula con

$\displaystyle\frac{1}{ f_{vvd} }=( n -1)\left(\displaystyle\frac{1}{ R_1 }+\displaystyle\frac{1}{ R_2 }-\displaystyle\frac{( n -1)d}{ n R_1 R_2 }\right)$

(ID 3348)

Una caso especial es aquel en que los radios son iguales, o sea R=R_1=R_2. Por ello el foco se calcula de:

$\displaystyle\frac{1}{ f_{vcs} }=\displaystyle\frac{( n -1)^2 d }{ n R ^2}$

(ID 3430)

Los lentes reales tienen un grosor que se debe considerar. Si el lente tiene vidrio con indice de refracci n n, un grosor en el centro de d y las curvaturas son R_1 y R_2, se puede calcular el foco f. Para ello basta tomar la ecuaci n del lente bi-convexo e introducir el radios de curvatura R_2 con el signo negativo:

$\displaystyle\frac{1}{ f_{vcs} }=( n -1)\left(\displaystyle\frac{1}{ R_1 }-\displaystyle\frac{1}{ R_2 }+\displaystyle\frac{( n -1) d }{ n R_1 R_2 }\right)$

(ID 3350)

Una caso especial es aquel en que los radios son iguales, o sea R=R_1=R_2. Por ello el foco se calcula de:

$\displaystyle\frac{1}{ f_{csd} }=-( n -1)\left(\displaystyle\frac{2}{ R } +\displaystyle\frac{( n -1) d }{ n R ^2}\right)$

(ID 3431)

Una caso especial es aquel en que los radios son iguales, o sea R=R_1=R_2. Por ello el foco se calcula de:

$\displaystyle\frac{1}{ f_{cvs} }=\displaystyle\frac{( n -1)^2 d }{ n R ^2}$

(ID 3429)

Los lentes reales tienen un grosor que se debe considerar. Si el lente tiene vidrio con indice de refracci n n, un grosor en el centro de d y las curvaturas son R_1 y R_2, se puede calcular el foco f. Para ello basta tomar la ecuaci n del lente bi-convexo e introducir los radios de curvatura con el signo negativo:

$\displaystyle\frac{1}{ f_{ccd} }=-( n -1)\left(\displaystyle\frac{1}{ R_1 }+\displaystyle\frac{1}{ R_2 }+\displaystyle\frac{( n -1)d}{ n R_1 R_2 }\right)$

(ID 3349)

Cuando se acoplan dos lentes con sus respectivos focos, el primer lente genera una imagen que funciona como objeto para el segundo lente que a su vez genera una imagen de una imagen:

(ID 9465)

Aqui va el applet ...

(ID 194)

The refractive index of glass can depend on the wavelength or frequency of light. In such cases, the glass is referred to as 'chromatic.' If it does not exhibit this property, it is called 'achromatic.'

The main issue with this property is that the focal point of a lens depends on the color of light. Therefore, an optical lens has the problem that if the eye can focus on one color, it will not be able to simultaneously focus on objects of other colors.

(ID 1626)


ID:(299, 0)