Parallele hydraulische Elemente (2)
Storyboard
Wenn hydraulische Elemente parallel geschaltet sind, wird der Durchfluss zwischen ihnen verteilt, während der Druckabfall für alle gleich ist. Die Summe der individuellen Durchflüsse ergibt den Gesamtdurchfluss, und daher entspricht der Gesamthydraulikwiderstand dem Kehrwert der Summe der Kehrwerte der individuellen Hydraulikwiderstände. Andererseits werden hydraulische Leitfähigkeiten direkt addiert.
ID:(2106, 0)
Hydraulischer Widerstand paralleler Elemente (2)
Konzept
Eine effiziente Methode, ein Rohr mit variablen Querschnitten zu modellieren, besteht darin, es in Abschnitte mit konstantem Radius zu unterteilen und dann die hydraulischen Widerstände in Reihe zu summieren. Nehmen wir an, wir haben eine Serie von Elementen die Hydraulischer Widerstand in einem Netzwerk ($R_{hk}$), deren Widerstand von die Viskosität ($\eta$), der Zylinder k Radio ($R_k$) und der Länge des Rohrs k ($\Delta L_k$) abhängt, gemäß der folgenden Gleichung:
$ R_h =\displaystyle\frac{8 \eta | \Delta L | }{ \pi R ^4}$ |
In jedem Element betrachten wir eine Druckunterschied in einem Netzwerk ($\Delta p_k$) zusammen mit die Hydraulischer Widerstand in einem Netzwerk ($R_{hk}$) und dem Volumenstrom der Volumenstrom ($J_V$), wobei das Darcy-Gesetz angewendet wird:
$ \Delta p = R_{h2} J_{V2} $ |
Der Gesamtwiderstand des Systems, der Flujo de Volumen Total ($J_{Vt}$), ist die Summe der individuellen hydraulischen Widerstände Volumenstrom in einem Netzwerk ($J_{Vk}$) jedes Abschnitts:
$ J_{Vt} =\displaystyle\sum_k J_{Vk} $ |
Daher ergibt sich:
$J_{Vt}=\displaystyle\sum_k \Delta J_{Vk}=\displaystyle\sum_k \displaystyle\frac{\Delta p_k}{R_{hk}}=\left(\displaystyle\sum_k \displaystyle\frac{1}{R_{hk}}\right)\Delta p\equiv \displaystyle\frac{1}{R_{pt}}J_V$
Somit kann das System als ein einzelnes Rohr mit einem Gesamtwiderstand modelliert werden, der durch die Summe der einzelnen Komponenten berechnet wird:
$\displaystyle\frac{1}{ R_{pt} }=\sum_k\displaystyle\frac{1}{ R_{hk} }$ |
ID:(15949, 0)
Hydraulische Leitfähigkeit paralleler Elemente (2)
Konzept
Im Fall einer Summe, bei der die Elemente in Serie geschaltet sind, wird die Gesamthydraulikleitfähigkeit des Systems berechnet, indem die individuellen hydraulischen Leitfähigkeiten jedes Elements addiert werden.
die Insgesamt hydraulischen Widerstand in Parallel ($R_{pt}$), zusammen mit die Hydraulischer Widerstand in einem Netzwerk ($R_{hk}$), in
$\displaystyle\frac{1}{ R_{pt} }=\sum_k\displaystyle\frac{1}{ R_{hk} }$ |
und zusammen mit die Hydraulische Leitfähigkeit in einem Netzwerk ($G_{hk}$) und der Gleichung
$ R_{h2} = \displaystyle\frac{1}{ G_{h2} }$ |
führt zu die Parallele hydraulische Gesamtleitfähigkeit ($G_{pt}$) kann berechnet werden mit:
$ G_{pt} =\displaystyle\sum_k G_{hk} $ |
ID:(15947, 0)
Darcys Gesetz und hydraulischer Widerstand (1)
Gleichung
Darcy schreibt die Hagen-Poiseuille-Gleichung so um, dass die Druckunterschied ($\Delta p$) gleich die Hydraulic Resistance ($R_h$) mal der Volumenstrom ($J_V$) ist:
$ \Delta p = R_{h1} J_{V1} $ |
$ \Delta p = R_h J_V $ |
Der Volumenstrom ($J_V$) kann aus die Hydraulische Leitfähigkeit ($G_h$) und die Druckunterschied ($\Delta p$) unter Verwendung der folgenden Gleichung berechnet werden:
$ J_V = G_h \Delta p $ |
Weiterhin, unter Verwendung der Beziehung für die Hydraulic Resistance ($R_h$):
$ R_h = \displaystyle\frac{1}{ G_h }$ |
ergibt sich:
$ \Delta p = R_h J_V $ |
ID:(3179, 1)
Darcys Gesetz und hydraulischer Widerstand (2)
Gleichung
Darcy schreibt die Hagen-Poiseuille-Gleichung so um, dass die Druckunterschied ($\Delta p$) gleich die Hydraulic Resistance ($R_h$) mal der Volumenstrom ($J_V$) ist:
$ \Delta p = R_{h2} J_{V2} $ |
$ \Delta p = R_h J_V $ |
Der Volumenstrom ($J_V$) kann aus die Hydraulische Leitfähigkeit ($G_h$) und die Druckunterschied ($\Delta p$) unter Verwendung der folgenden Gleichung berechnet werden:
$ J_V = G_h \Delta p $ |
Weiterhin, unter Verwendung der Beziehung für die Hydraulic Resistance ($R_h$):
$ R_h = \displaystyle\frac{1}{ G_h }$ |
ergibt sich:
$ \Delta p = R_h J_V $ |
ID:(3179, 2)
Darcys Gesetz und hydraulischer Widerstand (3)
Gleichung
Darcy schreibt die Hagen-Poiseuille-Gleichung so um, dass die Druckunterschied ($\Delta p$) gleich die Hydraulic Resistance ($R_h$) mal der Volumenstrom ($J_V$) ist:
$ \Delta p = R_{pt} J_{Vt} $ |
$ \Delta p = R_h J_V $ |
Der Volumenstrom ($J_V$) kann aus die Hydraulische Leitfähigkeit ($G_h$) und die Druckunterschied ($\Delta p$) unter Verwendung der folgenden Gleichung berechnet werden:
$ J_V = G_h \Delta p $ |
Weiterhin, unter Verwendung der Beziehung für die Hydraulic Resistance ($R_h$):
$ R_h = \displaystyle\frac{1}{ G_h }$ |
ergibt sich:
$ \Delta p = R_h J_V $ |
ID:(3179, 3)
Darcys Gesetz und hydraulische Leitfähigkeit (1)
Gleichung
Durch die Einführung von die Hydraulische Leitfähigkeit ($G_h$) können wir die Hagen-Poiseuille-Gleichung mit die Druckunterschied ($\Delta p$) und der Volumenstrom ($J_V$) mithilfe der folgenden Gleichung umschreiben:
$ J_{V1} = G_{h1} \Delta p $ |
$ J_V = G_h \Delta p $ |
Wenn wir das Hagen-Poiseuille-Gesetz betrachten, das es uns ermöglicht, der Volumenstrom ($J_V$) aus der Rohrradius ($R$), die Viskosität ($\eta$), der Rohrlänge ($\Delta L$) und die Druckunterschied ($\Delta p$) zu berechnen:
$ J_V =-\displaystyle\frac{ \pi R ^4}{8 \eta }\displaystyle\frac{ \Delta p }{ \Delta L }$ |
können wir die Hydraulische Leitfähigkeit ($G_h$) einführen, das in Bezug auf der Rohrlänge ($\Delta L$), der Rohrradius ($R$) und die Viskosität ($\eta$) definiert ist:
$ G_h =\displaystyle\frac{ \pi R ^4}{8 \eta | \Delta L | }$ |
um zu folgendem Ergebnis zu gelangen:
$ J_V = G_h \Delta p $ |
ID:(14471, 1)
Darcys Gesetz und hydraulische Leitfähigkeit (2)
Gleichung
Durch die Einführung von die Hydraulische Leitfähigkeit ($G_h$) können wir die Hagen-Poiseuille-Gleichung mit die Druckunterschied ($\Delta p$) und der Volumenstrom ($J_V$) mithilfe der folgenden Gleichung umschreiben:
$ J_{V2} = G_{h2} \Delta p $ |
$ J_V = G_h \Delta p $ |
Wenn wir das Hagen-Poiseuille-Gesetz betrachten, das es uns ermöglicht, der Volumenstrom ($J_V$) aus der Rohrradius ($R$), die Viskosität ($\eta$), der Rohrlänge ($\Delta L$) und die Druckunterschied ($\Delta p$) zu berechnen:
$ J_V =-\displaystyle\frac{ \pi R ^4}{8 \eta }\displaystyle\frac{ \Delta p }{ \Delta L }$ |
können wir die Hydraulische Leitfähigkeit ($G_h$) einführen, das in Bezug auf der Rohrlänge ($\Delta L$), der Rohrradius ($R$) und die Viskosität ($\eta$) definiert ist:
$ G_h =\displaystyle\frac{ \pi R ^4}{8 \eta | \Delta L | }$ |
um zu folgendem Ergebnis zu gelangen:
$ J_V = G_h \Delta p $ |
ID:(14471, 2)
Darcys Gesetz und hydraulische Leitfähigkeit (3)
Gleichung
Durch die Einführung von die Hydraulische Leitfähigkeit ($G_h$) können wir die Hagen-Poiseuille-Gleichung mit die Druckunterschied ($\Delta p$) und der Volumenstrom ($J_V$) mithilfe der folgenden Gleichung umschreiben:
$ J_{Vt} = G_{pt} \Delta p $ |
$ J_V = G_h \Delta p $ |
Wenn wir das Hagen-Poiseuille-Gesetz betrachten, das es uns ermöglicht, der Volumenstrom ($J_V$) aus der Rohrradius ($R$), die Viskosität ($\eta$), der Rohrlänge ($\Delta L$) und die Druckunterschied ($\Delta p$) zu berechnen:
$ J_V =-\displaystyle\frac{ \pi R ^4}{8 \eta }\displaystyle\frac{ \Delta p }{ \Delta L }$ |
können wir die Hydraulische Leitfähigkeit ($G_h$) einführen, das in Bezug auf der Rohrlänge ($\Delta L$), der Rohrradius ($R$) und die Viskosität ($\eta$) definiert ist:
$ G_h =\displaystyle\frac{ \pi R ^4}{8 \eta | \Delta L | }$ |
um zu folgendem Ergebnis zu gelangen:
$ J_V = G_h \Delta p $ |
ID:(14471, 3)
Hydraulische Leitfähigkeit (3)
Gleichung
Im Zusammenhang mit dem elektrischen Widerstand gibt es dessen Inverses, das als elektrische Leitfähigkeit bekannt ist. Ebenso kann das, was die Hydraulische Leitfähigkeit ($G_h$) wäre, in Bezug auf die Hydraulic Resistance ($R_h$) durch den Ausdruck definiert werden:
$ R_{pt} = \displaystyle\frac{1}{ G_{pt} }$ |
$ R_h = \displaystyle\frac{1}{ G_h }$ |
ID:(15092, 3)
Hydraulischer Widerstand eines Rohres (1)
Gleichung
Da die Hydraulic Resistance ($R_h$) dem Kehrwert von die Hydraulische Leitfähigkeit ($G_h$) entspricht, kann es aus dem Ausdruck des letzteren berechnet werden. Auf diese Weise können wir Parameter identifizieren, die mit der Geometrie (der Rohrlänge ($\Delta L$) und der Rohrradius ($R$)) und der Art des Fluids (die Viskosität ($\eta$)) zusammenhängen und die gemeinsam als eine Hydraulic Resistance ($R_h$) bezeichnet werden können:
$ R_{h1} =\displaystyle\frac{8 \eta | \Delta L_1 | }{ \pi R_1 ^4}$ |
$ R_h =\displaystyle\frac{8 \eta | \Delta L | }{ \pi R ^4}$ |
Da die Hydraulic Resistance ($R_h$) gemäß der folgenden Gleichung gleich die Hydraulische Leitfähigkeit ($G_h$) ist:
$ R_h = \displaystyle\frac{1}{ G_h }$ |
und da die Hydraulische Leitfähigkeit ($G_h$) wie folgt in Bezug auf die Viskosität ($\eta$), der Rohrradius ($R$) und der Rohrlänge ($\Delta L$) ausgedrückt wird:
$ G_h =\displaystyle\frac{ \pi R ^4}{8 \eta | \Delta L | }$ |
können wir folgern, dass:
$ R_h =\displaystyle\frac{8 \eta | \Delta L | }{ \pi R ^4}$ |
ID:(3629, 1)
Hydraulischer Widerstand eines Rohres (2)
Gleichung
Da die Hydraulic Resistance ($R_h$) dem Kehrwert von die Hydraulische Leitfähigkeit ($G_h$) entspricht, kann es aus dem Ausdruck des letzteren berechnet werden. Auf diese Weise können wir Parameter identifizieren, die mit der Geometrie (der Rohrlänge ($\Delta L$) und der Rohrradius ($R$)) und der Art des Fluids (die Viskosität ($\eta$)) zusammenhängen und die gemeinsam als eine Hydraulic Resistance ($R_h$) bezeichnet werden können:
$ R_{h2} =\displaystyle\frac{8 \eta | \Delta L_2 | }{ \pi R_2 ^4}$ |
$ R_h =\displaystyle\frac{8 \eta | \Delta L | }{ \pi R ^4}$ |
Da die Hydraulic Resistance ($R_h$) gemäß der folgenden Gleichung gleich die Hydraulische Leitfähigkeit ($G_h$) ist:
$ R_h = \displaystyle\frac{1}{ G_h }$ |
und da die Hydraulische Leitfähigkeit ($G_h$) wie folgt in Bezug auf die Viskosität ($\eta$), der Rohrradius ($R$) und der Rohrlänge ($\Delta L$) ausgedrückt wird:
$ G_h =\displaystyle\frac{ \pi R ^4}{8 \eta | \Delta L | }$ |
können wir folgern, dass:
$ R_h =\displaystyle\frac{8 \eta | \Delta L | }{ \pi R ^4}$ |
ID:(3629, 2)
Hydraulische Leitfähigkeit (1)
Gleichung
Im Zusammenhang mit dem elektrischen Widerstand gibt es dessen Inverses, das als elektrische Leitfähigkeit bekannt ist. Ebenso kann das, was die Hydraulische Leitfähigkeit ($G_h$) wäre, in Bezug auf die Hydraulic Resistance ($R_h$) durch den Ausdruck definiert werden:
$ R_{h1} = \displaystyle\frac{1}{ G_{h1} }$ |
$ R_h = \displaystyle\frac{1}{ G_h }$ |
ID:(15092, 1)
Hydraulische Leitfähigkeit (2)
Gleichung
Im Zusammenhang mit dem elektrischen Widerstand gibt es dessen Inverses, das als elektrische Leitfähigkeit bekannt ist. Ebenso kann das, was die Hydraulische Leitfähigkeit ($G_h$) wäre, in Bezug auf die Hydraulic Resistance ($R_h$) durch den Ausdruck definiert werden:
$ R_{h2} = \displaystyle\frac{1}{ G_{h2} }$ |
$ R_h = \displaystyle\frac{1}{ G_h }$ |
ID:(15092, 2)
Hydraulische Leitfähigkeit eines Rohres (1)
Gleichung
Mit der Rohrradius ($R$), die Viskosität ($\eta$) und der Rohrlänge ($\Delta L$) haben wir, dass eine Hydraulische Leitfähigkeit ($G_h$) ist:
$ G_{h1} =\displaystyle\frac{ \pi R_1 ^4}{8 \eta | \Delta L_1 | }$ |
$ G_h =\displaystyle\frac{ \pi R ^4}{8 \eta | \Delta L | }$ |
ID:(15102, 1)
Hydraulische Leitfähigkeit eines Rohres (2)
Gleichung
Mit der Rohrradius ($R$), die Viskosität ($\eta$) und der Rohrlänge ($\Delta L$) haben wir, dass eine Hydraulische Leitfähigkeit ($G_h$) ist:
$ G_{h2} =\displaystyle\frac{ \pi R_2 ^4}{8 \eta | \Delta L_2 | }$ |
$ G_h =\displaystyle\frac{ \pi R ^4}{8 \eta | \Delta L | }$ |
ID:(15102, 2)
Summe der Widerstände in Reihe (2)
Gleichung
Die Parallelschaltung von die Hydraulische Leitfähigkeit 1 ($G_{h1}$) und die Hydraulische Leitfähigkeit 2 ($G_{h2}$) ergibt eine äquivalente Kombination von die Parallele hydraulische Gesamtleitfähigkeit ($G_{pt}$):
$ G_{pt} = G_{h1} + G_{h2} $ |
None
ID:(3856, 0)
Gesamtdurchfluss (2)
Gleichung
Der Flujo de Volumen Total ($J_{Vt}$) stellt die Gesamtsumme der einzelnen Beiträge von der Volumenstrom 1 ($J_{V1}$) und der Volumenstrom 2 ($J_{V2}$) dar, die aus den parallel geschalteten Elementen stammen:
$ J_{Vt} = J_{V1} + J_{V2} $ |
ID:(12800, 0)
Summe der Widerstände in Parallelschaltung (2)
Gleichung
Die Parallelschaltung von die Hydraulic Resistance 1 ($R_{h1}$) und die Hydraulic Resistance 2 ($R_{h2}$) ergibt eine Gesamtsumme von die Insgesamt hydraulischen Widerstand in Serie ($R_{st}$):
$\displaystyle\frac{1}{ R_{pt} }=\displaystyle\frac{1}{ R_{h1} }+\displaystyle\frac{1}{ R_{h2} }$ |
ID:(3858, 0)